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The t h e o r y  of t h e r m a l  d i f fus ion [1] employs  an idea l i zed  mode l  in  which  the  t e m p e r a t u r e  at a l l  points  
on the  hot or  cold s u r f a c e  is a s s u m e d  to be the s a m e .  In p r a c t i c e ,  however ,  such a mode l  cannot  be r e a l -  
ized,  s i n c e  even the m o s t  ca re fu l  des ign  of the co lumn  wil l  r e s u l t  in a s y m m e t r y  in the  t e m p e r a t u r e  d i s t r i -  
bu t ions  on these  s u r f a c e s .  This  a s y m m e t r y  is  m o r e  p ronounced  in  l iqu id  c o l umns  b e c a u s e  of the s m a l l  
.width of the annu lus ,  and so the c o l u m n  a c q u i r e s  p a r a s i t i c  convec t ion  [1], which r e s u l t s  in r e s o l u t i o n  w o r s e  
than theory predicts. The origin of this effect, which is extremely undesirable in practical operation is 
explained in Fig. la [I]. The azimuthal temperature gradient in regions I and II causes the mean tempera- 
ture of the liquid to vary, so the liquid as a whole moves in one direction in region I and in the opposite di- 
rection in region K; in each of these regions there are also two flows caused by the radial temperature 
gradient, which is incorporated in the theory of the column. 

It is considered [i] that the parasitic convection alters the coefficients H and K in the transport equa- 
tion: 

j = H c c - -  K de. 
d--~-' (i ) 

and the t e m p e r a t u r e  a s y m m e t r y  affects  m o s t  s u b s t a n t i a l l y  K, whi le  H is i n s e n s i t i v e  to this  f a c t o r .  The 
r e s u l t  [11 is  

Kp 
- -  \ A T /  ' 

(2) 

where Kp is the component of K due to parasitic convection. 

It is clear from (2) that I~p is very strongly dependent on the ratio of the annulus perimeter B to the 
annulus width a. If we assume for a liquid column that 5T = 5~ AT -- 80~ B = I00 ram, a = 0.25 ram. then 
(2) gives Kp/K c = 0.5 �9 10a, and such a column would produce no separation, although in practice a real col- 
umn with these parameters gives satisfactory enrichment of the components. 

This feature indicates that the arguments giving (2) do not reflect the true picture of the separation in 
the presence of parasitic convection. 

An attempt has been made [2] to solve this problem via formal mathematical formulation for a column 
having a continuous through flow or; no detailed physical model for the parasitic convection is then consid- 
ered. 

The result is 

)+ ( 1 
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Fig. 1. Motion of the parasi t ic  flows in a t he r -  
mal-diffusion column with t empera tu re  a s y m -  
me t ry :  a) horizontal  section of the column; 
the broken line shows the boundary between 
the descending flow (region I) and the r i s ing 
one (region ID, these parasi t ic  flows being due 
to the t empera tu re  difference 6T between the 
volumes I and II of the liquid; b) vert ical  s e c -  
tion. The flow of enriched component passes  
downwards f rom section I into section II but 
upwards f rom section II into section I. 

which contras ts  with (2) in giving Kp as too smal l ;  
fo r  instance, the conditions of the above example 
with 8 = 0 would give Kp/K c = 0.3. 

Equation (3) takes no account of the geometr ical  
dimensions of the column and the physical c h a r a c t e r -  
ist ics of the binary mixture ,  although we show below 
that these have substantial effects on the ra t io  Kp/Kc. 

These features  fo rce  us to be cautious about 
the resul ts  derived by Dickel. 

Here  we present  an essent ial ly  different ap- 
proach to the paras i t ic  convection in such a column ~, 
as in [1], we assume that there  are  two paras i t ic  
flows (Fig. la) .  Let  flow I sink andflow II r i se ;  the 
flows r e v e r s e  in direction at the top and bottom of 
the column, and flow I becomes flow II and vice 
ve r sa .  This is shown schemat ica l ly  in Fig.  lb .  We 
envisage only liquid colt[mns in what follows, in which 
diffusion t ranspor t  in the azimuthal direction may  be 
neglected without appreciable e r ro r ,  on account of 
the ext remely  small value of a / B .  Then the column 
may be considered as consist ing of two columns, one 
feeding the other  with a flow a equal to the flow 
caused by paras i t ic  convection. 

This model can be used to analyze the operation of columns differing in mean tempera tu re  and working 

in parallel in one stage of a thermal-diffusion sys tem.  

It has been shown [1] that the takeoff a causes  the flow of enriched component to the positive end to 

the column to be 

]z = H c c  q- (~c - -  K d c (4) 
- -  d z  ~ 

where the upper sign re fe r s  to take off f rom the positive end and the lower  to takeoff f rom the negative end. 

In the steady state 
div ] z=  0. (5) 

In principle,  the problem can be solved f rom an .arbi t rary  variat ion in the concentrat ion c, but in that 
case  (5) becomes nonlinear,  and to obtain resul ts  capable of analysis we consider  only two l inear  approxi-  

mat ions.  

1. c << 1. Then the above statement about the signs in (4) give us f rom (5) in t e rms  of dimensionless  

variables for  columns I and II that 

dc' a~c' _ (1 ~ ~ ' )  = 0 ,  (6)  
dy '~ dy' 

d2c'-~' - -  (1 - -  • dcll = 0, (7) 
dy "~ ay 

The solution to (6) and (7) is 
c' = A' q- B' exp [(1 + •  (8) 

c" = A" -[- B" exp [(1 - -  • y"] , (9) 

which contains four a rb i t r a ry  constants ,  which have to be determined via four  suitable conditions. 

It is c lear  that, in the s teady state,  we will have not only ~ the same for  columns I and II but also the 
1 the concentrat ion of this component at the posit ive end flow of the enriched component; if we denote by c e 

of column I, then we should have for  colt~mn I 
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and for  column II 

J 'Lo = i ;L~ = % (lo) 

J ; t~:o:  Jzl~=~: - % (11) 

where the minus sign indicates that withdrawal occurs at the negative end of the column. We replace the 
flows by the expressions for (4) with the condition cc ~ e << 1 and replace the concentrations by the values 
f rom (8) and (9) to get, after conversion to d~mensionless form,  instead of (10) and (11) that 

A ' = •  )ye], 

(1--• -t- • + • exp [(1 -t- • y;] = 0. 

(12) 

(13) 

The component concentration at the withdrawal point should be equal to the concentration in the with- 

drawal product, so we have 

~'l~=~ : ~%=o, (14) 

which f rom (8) and (9) leads to 
A' + B' exp [(1 + • =A"+B".  (15) 

The pair of columns I and II is a closed system for which we have to apply the law of conservation of mass 

for a given component. 

On this basis we get art integral condition for the pair of columns I and lh 

C'a.v+ Car (16). 
co-- 2 

Y N 
Equation (16) assumes that the :masses of liquid in columns I and II are  equal; here  Cav and Cav are the 
mean concentrations in these columns respect ively,  which are defined by 

Ye 

Y~ J 
0 

Ye lj. 
Car= ~ c"dy. (18) 

0 

From (16) with (8), (9), (17), and (18) we get 

B '  B" 
- -  -r y ; ( i - -u")  {exp[( l - -z)y~-- l}  =2c 0. A '+  y;(1 + • ) {exp [(1 + • 1}+A . . . . . . .  (19) 

F rom sys tem (12), (13), (15), and (19) we get the constants A',  B' ,  A", B", and substitute theirvalues  into (8) 
and (9) to get equations for  the concentration variation in each column in relat ion to the dimensionless length. 
For column I 

/ 1 -~-x' (exp [(1 --x")g;] -- 1) - -u"(1--•  @• c'=2Co(1--n")2{n'-t-exp[--(l @n')(Y:--Y')]} ( y; 

- -  t - 1  • • (1_ exp [_  (1 + • ' ; 
+ • (~_~,,)2~ ~ 0  +~') 

For  colurml II 

(20) 

c " :  2c o ( 1 -  • [(i--~")y"] --• [ 1,, (exp [(1--• --1) 

( ) }' •215  2 • 1--if '  ~ (1- -exp[ - - ( l+•  . 
- ~ " ( i - ~ - ) +  ~ V  + ~  1+• 

(21) 

ff ~"  = 1, the Iast  two equations become indeterminate in the form 0/0, which is resolved to give 

c't,~,,=, - 
2Co ~' +exp [--(I + • (y;-- y')] 
• 1 

1 + y~(1 @ ~-') {1-exp [--(1 +~')y;]} 
(22) 
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1 +• 1 ? y" c"1~"=1=2c~ ~' 1 (23) 
I + y ; + ( l + •  {1-- exp [-- (1 +• 

A rea l  col• consists  of these  columns I and II, so the concentrat ions at the ends a re  the half sums of the 
concentrat ions at the corresponding ends of the component colurnns, i . e . ,  

1 

c i =o = ( , ; .=o 

(24) 

We substi tute in (24) fo r  the quantities in parentheses  the values given by (20) and (21) to get 

e =ye = eo { I --2• + exp [(1 --' • (1 1 • (exp [(1--• y : ] -  l) 

•215 • --• }-I --• 1+•  '(1-exp[-(l-]-e')y;]) ' 

1 - -  i r  

c~o=Co 1 + 3 '  

• y: (1 - -  u") 

{1 -l- 2~' -I- exp [--(1 -l- ~') Y;] } 

(exp [ - - ( 1 -  • - - 1 ) - - •  

(25) 

z'(1 --x") z ' (1 - -4" )  , ]-~ + (1 --  exp [--( 1 + • ) y;])[ . (26) + 
1 + 4' y:(1 + • 

We get the separat ion coefficient  fo r  i column with paras i t ic  convection as follows when c << 1, if we sepa-  

1 + ~ '  i - -  2~r + exp [(1 - -  if') y:] 

1-- i f '  l + 2 •  " 
(27) 

r a t e  the lef t  and right sides of (25) and (26): 

C y=y e 

Cy=O 

If ~r = 1 

(28) (2 ~- y:) (1 + x') 
qu"=l  = 1 + 2• + exp [--(1 + hi)y;]" 

T K we put •' = ~r = 0 in (27), which cor responds  to absence of paras t ic  convection, we get Ye = Y~ and the 
separat ion coefficient becomes 

q* -- exp (ye). (29) 

Simplicity of analysis leads us to rep lace  (27) by the simplified fo rm  with 

y'=y'~=ye, • = • = x. 

Then the resul t ing  express ion  is 

q =  1 + •  1 --2• + exp [(I --• (30) 
1 - - •  ~ 1 + 2•  exp [--(1 + • 

which re la tes  the part i t ion coefficient  to the two p a r am e te r s  ~ and Ye. 

F igure  2 shows this re la t ionship in the coordinates  l n q / l n q * - ~ y e ,  where  q* is defined by (29); note 
that fo r  Ye -< 1 the curves  prac t ica l ly  coincide,  i . e . ,  t he re  is no effect  f rom Ye on the product  ~Ye. 

F igure  2 gives also the important  conclusion that the ra t io  l n q / l n q *  is reduced not only when ~ in-  
c r e a s e s  but also whet: Ye inc reases  with ~ unchanged. 

One can inc rease  ~ = u/H ei ther  by increas ing a or by reducing H; this means ,  for  example,  that 
will be considerably  l a r g e r  for  a b inary  mix tu re  with a small  thermal-di f fus ion constant than it will be for  

a readi ly  separated mixture  with a l a r g e r  ~, and consequently the effects of paras i t ic  convection will be 
l e s s  in the l a t t e r  case  for  the same paras i t ic  flow ra t e  ~, while the separat ion coefficient  will be l a r g e r .  
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The  e f fec t s  of Ye m a y  be  examined  v i a  the  expanded  f o r m  of the  e x p r e s s i o n  d e r i v e d  f r o m  the  def in i -  
t ion  of H and K c [3]: 

HL ~zqD L 
Y~ - - 504 . (31) 

Ko gl3p a 4 

We s e e  tha t  Ye is  the  p r o d u c t  of two quan t i t i e s ,  one of which is  dependent  on the  phys i ca l  cons t an t s  of the  
:mixture ,  whi le  the  o the r  is dependent  on the  g e o m e t r i c a l  c h a r a c t e r i s t i c s  of the  co lumn .  Then,  i n c r e a s e  in 
co lumn  length  L should l ead  f o r  the  g iven  b i n a r y  m i x t u r e  to i n c r e a s e  in Ye and f o r  f ixed ~ to r educ t ion  in 
In q / I n  q*. 

A s i m i l a r  conc lus ion  can  be  d rawn f r o m  the e f fec t s  of r educ ing  the  annulus widLh, as :may be  s een  b y  
the  fo l lowing  a r g u m e n t .  

I t  ha s  been  shown [1] tha t  the  :mean speed  of the  p a r a s i t i c  f low is  

p - g~pa25T (3 2) 
48~1 

As ~ = (1 /2  )paBWrp, we have  

7.5 7~6T •  H - -  ~ '  (33) 

i .  e . ,  x is not exp l i c i t ly  dependent  on the  gap  width,  a l though t h e r e  is an inexpl ic i t  dependence ,  s ince  r e -  
duct ion in a m a y  i n c r e a s e  the  t e m p e r a t u r e  a s y m m e t r y  5 %  and x will  i n c r e a s e .  

The  r e s u l t  g iven by  (30) :may be  r e l a t e d  to  the  Kp by  i n c o r p o r a t i n g  p a r a s i t i c  convec t ion  into (2). 

We put 

HL = g, = g:, (34) 
K~+ Kp 1 + K ;  

K~ 

which enab les  us to put tha t  

1 + • 1 - -  2• + exp [(1 - -  ~) W] 
1 - - x  "1 + 2 •  + e x p  [--(1 + • b'r 

whence  f r o m  (34) we h a v e  

Kv _ ge - -  1, 
Ke In 1 + • 1 - -  2• + exp [(1 - -  • ge] 

1 - - •  l + 2 • 2 1 5  

i.  e . ,  Kp is  s t r o n g l y  dependent  on Ye, which  is  not  r e f l e c t e d  in the  r e s u l t s  of [2]. 

2. 5-5 = b .  In th is  c a s e ,  (6) and (7) a r e  r e p l a c e d  f r o m  (5) by  

d2c ' , dc" 
- - ~  ~ O, 

dg '2 dg' 

d~c " dc" 
- - + •  =0. 
dg "~ dx" 

(35) 

(36) 

(3 7) 

The so lu t ions  a r e  
c' = A' + B' exp (• (38) 

c" = A" + B" exp ( - -  • (39) 

which  should,  as in the  p r e v i o u s  c a s e ,  s a t i s f y  condi t ions  (10), (11), (14), and (17), f r o m  which we find the 
values of the arbitrary constants. 

Then the concentrations in each of the columns are given by 

, b ( ' ) b [1 - -  exp ( - -  • b c = c ~  2• i I - ~  •  q- 2• ""g~" 2• '~9; [ 1 - -  exp ( - -  • + • e x p [ - - •  

b,, ( 1 + ~  ' ) +  b [ 1 - -  exp ( - -  • b [l - -  exp ( - -  • - -  b + ~ L  exp (-- • j"). c~ 2z '  \ • 2• "~ g~ 2• '~ g; ~7- 
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Ln 

a,t ~ 1 " \  ~ X ~ X . ~  Fig.  2. Dependence of l nq / lnq*  on 
~Ye for  various dimensionless lengths 

~ of the column Ye: 1 - Ye = 0.01; 0 .1 ;  
a~ ~ . . . . . ~  1.0; 2 - Ye = 10, 

to t5 xy, 

From (24) we get the concentrations at the bottom and top of the real  column 

b 
cu=ue = c o ~ .~ . [l -- exp (-- • 

2z ye 

b 
cv=o = c o + 2• V': [1 -- exp (-- • 

(41) 

If for simplici ty,  we put ~ '  = x "  = x ,  

q - -  
c y=v ~ 1 - -  C y=o _ 

1 - -  Cy=y e Cy=o 

b, [ • ] b [1-- exp (-- • + - ~ -  1-- exp(--• , (42) 
2• V: • 

b [I exp(--z'V;)] b [ •  3 ,~ , --  - -  1 exp(--• �9 (43) 
2• Ye 2• • 

! 
Ye = Y"e = Ye we get for  separation coefficient the expression 

b 
[1 -- exp (-- • 1 -- co-i--~ [1 --exp (-- • Co+ s 

b [1--exp(--• b [1-- exp (-- • ' (44) 
1 - -  c o - -  ~ Co - -  2 ~ -  

which for  c o = 0.5 becomes 

(45) q 
/ 1 - [, - o x p  ( -   yel] I 

The calculated points l ie almost  exactly on curve 1 in Fig. 2 for  the range of values of Ye in which we have 
e--~ = const (Ye < 3.4); this indicates that the above analysis  is correc t  for  any concentration provided that 
~<<1. 

We consider that these resul ts  are  of vital importance to the design of liquid thermal-diffusion appa- 
ratus and indicate ways of ra is ing perfor:mance. 

N O T A T I O N  

H = f i g p 2 ( A T } 2 B a S o ~ / 7 2 0 ~ l T ,  K = K c + Kp, K c  = [ 3 2 g 2 p 3 ( A T ) 2 B a Y / 3 6 2 8 8 0 ~ D  

are  t rans fe r  coefficients;  

B 

fiT 
AT u 

jz 
O" 

C 

L 
y = H z / I ~ ;  
% =if/H; 

w 

q 

I? 

P 

is the parasi t ic  component of the convective t rans fe r  coefficients;  
zs the per imeter  of the separat ing slot; 
is the gap; 
~s the tempera ture  difference due to tempera ture  asymmetry ;  
is the tempera ture  difference between hot and cold column surfaces;  
zs the :mean tempera ture  of liquid in column; 
m the flow of enriching component; 
m the selection; 
is the concentration; 
is the colt~mn length; 

is the velocity; 
is the separat ion coefficient; 
is the viscosity;  
is the density; 
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D 

c~ 

S u b s  

e 

h 

c 

P 
0 

I, 
2. 

3. 

is the diffusion coefficient; 

is the volume expansion coefficient; 

is the thermodiffusion constant. 

c r i p t s  

denotes to positive and of column; 
denotes hot; 
denotes cold; 
denotes parasit ic;  
denotes reference.  

One prime and two primes re fer ,  respectively,  to the column parts shown in Fig. 1 as I and II. 
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