PERFORMANCE OF A LIQUID THERMAL-DIFFUSION
COLUMN WITH TEMPERATURE ASYMMETRY OVER
THE WIDTH

R. Ya., Gurevich and G, D. Rabinovich UDC 621,039.34

The theory of thermal diffusion [1} employs an idealized model in which the temperature at all points
on the hot or cold surface is assumed to be the same, In practice, however, such a model cannot be real-
ized, since even the most careful design of the column will result in asymmetry in the temperature distri-
butions on these surfaces., This asymmetry is more pronounced in liquid columns because of the small
‘width of the annulus, and so the column acquires parasitic convection [1], which results in resolution worse
than theory predicts, The origin of this effect, which is extremely undesirable in practical operation is
explained in Fig, 1a [1], The azimuthal temperature gradient in regions I and TI causes the mean tempera-
ture of the liquid to vary, so the liquid as a whole moves in one direction in region I and in the opposite di-
rection in region II; in each of these regions there are also two flows caused by the radial temperature
gradient, which is incorporated in the theory of the column,

It is considered [1] that the parasitic convection alters the coefficients H and K in the transport equa-
tion:

j=He—K —Zg—, M

and the temperature asymmetry affects most substantially K, while H is insensitive to this factor. The

result [1] is
K, B (8T 9
KCZS(T) ()" @
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where Kp is the component of K due to parasitic convection,

It is clear from (2) that Kp is very strongly dependent on the ratio of the annulus perimeter B to the
annulus width a. If we assume for a liquid column that 6T = 5°C, AT = 80°C, B = 100 mm, ¢ = 0.25 mm, then
{2) gives Kp/Kc =0.5.108, and such a column would produce no separation, although in practice a real col-
umn with these parameters gives satisfactory enrichment of the components,

This feature indicates that the arguments giving (2) do not reflect the true picture of the separation in
the presence of parasitic convection,

An attempt has been made [2] to solve this problem via formal mathematical formulation for a column
having a continuous through flow ¢; no detailed physical model for the parasitic convection is then consid-
ered,

The result is
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Fig. 1. Motion of the parasitic flows in a ther-
mal -diffusion column with temperature asym-
metry: a) horizontal section of the column;
the broken line shows the boundary between
the descending flow (region I) and the rising
one (region II), these parasitic flows being due
to the temperature difference 5T between the
volumes I and II of the liquid; b) vertical sec-
tion, The flow of enriched component passes
downwards from section I into section II but
upwards from section II into section I,

which contrasts with (2) in giving Ky as too small;
for instance, the conditions of the above example
with e = 0 would give K/K, = 0.3.

Equation (3) takes no account of the geometrical
dimensions of the column and the physical character-
istics of the binary mixture, although we show below
that these have substantial effects on the ratio Kp/Ke.

These features force us to be cautious about
the results derived by Dickel,

Here we present an essentially different ap-
proach to the parasitic convection in such a column}
as in [1], we assume that there are two parasitic
flows (Fig., 1a), Let flow I sink andflow II rise; the
flows reverse in direction at the top and bottom of
the column, and flow I becomes flow II and vice
versa, This is shown schematically in Fig. 1b. We
envisage only liquid columns in what follows, in which
diffusion transport in the azimuthal direction may be
neglected without appreciable error, on account of
the extremely small value of ¢/B. Then the column
may be considered as consisting of two columns, one
feeding the other with a flow ¢ equal to the flow
caused by parasitic convection.

This model can be used to analyze the operation of columns differing in mean temperature and working

in parallel in one stage of a thermal-diffusion system.

It has been shown [1] that the takeoff ¢ causes the flow of enriched component to the positive end to

the column to be

j, = Hee + oc-—Kﬁ,

(4)

dz

where the upper sign refers to take off from the positive end and the lower to takeoff from the negative end,

In the steady state

divj, =0.

(5)

In principle, the problem can be solved from an .arbitrary variation in the concentration ¢, but in that
case (5) becomes nonlinear, and to obtain results capable of analysis we consider only two linear approxi-

mations.

1. c« 1. Then the above statement about the signs in (4) give us from (5) in terms of dimensionless

variables for columns I and II that

dzcz (1 + %) dc, =0, )
dy’ dy
z " "

d Cz o (1 %") EI;_ — Q. (7)
dyil dy

The solution to (6) and (7) is

¢ =A 4 Bexp[(1+ %)y’
C” _ AII _}_ B exp [(1 ——-%”) y”] ,

(8)
)

which contains four arbitrary constants, which have to be determined via four suitable conditions.

1t is clear that, in the steady state, we will have not only o the same for columns I and II but also the
flow of the enriched component; if we denote by c’e the concentration of this component at the positive end

of column I, then we should have for column I
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j’[z:O = j;{z:L = oc,, 10)
and for column II

j;!z:O = j;‘z:L = GC;’ (11)

where the minus sign indicates that withdrawal occurs at the negative end of the column, We replace the
flows by the expressions for (4) with the condition cec ~ ¢« 1 and replace the concentrations by the values
from (8) and (9) to get, after conversion to dimensionless form, instead of (10) and (11) that

A" =% B exp [(1 4+ %) y;J, (12)
(I—n)A" + %A +»"B exp [(1+ %) ye] =0 13

The component concentration at the withdrawal point should be equal to the concentration in the with-
drawal product, so we have

ey = (14)

2=07

which from (8) and (9) leads to
A" 4 B’ exp [(1+x)y] =A"+ B" {15)

The pair of columns I and II is a closed system for which we have to apply the law of conservation of mass
for a given component,

On this basis we get an integral condition for the pair of columns I and II:
c’av_*_ C;_v . (16)

1

"
av and ¢y are the

Equation {16) assumes that the masses of liquid in columns I and II are equal; here c
mean concentrations in these columns respectively, which are defined by

s,
. 1 /
Gy = A J‘ c'dy, m
)
yE
Cay = —1— j c'dy. 18)
fd
From (16) with (8), (9), (17), and (18) we get
g B, ! ’ LN B” o _
A+ m [exp [(l + % )ye] —1) + A" 4 ﬁ“_’*—y:(l vy {exp [(1 — %'}y — 1} = 2¢,. 19)

From system (12), (13), (15), and (19) we get the constants A', B!, A", B", and substitute their values into (8)
and (9) to get equations for the concentration variation in each column in relation to the dimensionless length,
For column I

o = 20, (1 — ') (¥ + exp[— (1 +x’)(y;—y')“{ “yf,“’ (exp [(1 =) 4] — 1) =" (1 — %) (1 + %)
’ "o AVI 1 — ”)2 ’ ’ ——1.
+w (1 —x) +—’y—;g—ﬁrz—,)(l——e><p [— +x)ye])} ; (20)

For column II

¢ = 2¢, (1 —»") {exp [(1 — ") y”] — %'} { ; (exp [(1 —x")g)] — 1)

e

—1

)2(1—exp [—( +n')y;])} . (21)

’ M2 ’ o
—u”(l-—x")-{ﬂ%“ %) % (1 3

1+ T ?: 1o
I w" =1, the last two equations become indeterminate in the form 0/0, which is resolved to give
, 2 ®' 4-exp [— (1 + %) (4, —¢)
&'t = %—C" — [ )] : (22)
I+ m‘){l —exp [— (1 + %)y}
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C”IM":] = 200 I:K ‘ 1 1 + y . (23)
1+ ._—__y; TR {1—exp [——(1 + %)y}

A real column consists of these columns I and II, so the concentrations at the ends are the half sums of the

concentrations at the corresponding ends of the component columns, i,e,,

1 . "
€ lymy, = - (Chrmyy T+ Cireye),s

1 (24)
elymo = —— Gy o).
2
We substitute in (24) for the quantities in parentheses the values given by (20) and (21) to get
7 ' ' 11 1 3 ’I
C =y, =0 {l —2%" -+ exp [(1 — % )ye]} {m (exp [(I—x )yeJ — 1)
" x’ (l — Jc") %’ (1 — M” ! ’ -—1
— e _[_y;(l_l_%,)z(l—-exp[—(l+x)ye])} , (25)
1-—%” + N
cy=0:co-—1——_l:7 {1+ 2x" +exp[— (1 +%)y])
1 . " "
X {—«y:(l e (exp [—(1—= )y — 1) —«
o (I —o ' (1 —n") PN
e s ol Gk i G R R (26)

We get the separation coefficient for a column with parasitic convection as follows when ¢ « 1, if we sepa-
rate the left and right sides of (25) and (26):

e _ . daw 1= 4ep (L) g
R A e 7
Hur=1
g @+ +x) o

W=l T 2%+ exp [— (1 + %) y}]
If we put n!' = #" = 0 in (27), which corresponds to absence of parastic convection, we get y'e = yg and the
separation coefficient becomes

% = exp (y,). (29)

Simplicity of analysis leads us to replace (27) by the simplified form with

’ »”

=Y =Y W =% =
Then the resulting expression is

14w 1 —Zetexp[(1 =)y
I T T ot e [— (T T ) 4]

30)

which relates the partition coefficient to the two parameters w and ye.

Figure 2 shows this relationship in the coordinates Inq/ln g*—nye, where g* is defined by (29); note
that for y, = 1 the curves practically coincide, i.e., there is no effect from y, on the product nye.

Figure 2 gives also the important conclusion that the ratio Ing/lng* is reduced not only when ¢ in-
creases but also when y, increases with  unchanged.

One can increase % = ¢/H either by increasing ¢ or by reducing H; this means, for example, that
v will be considerably larger for a binary mixture with a small thermal~diffusion constant than it will be for
a readily separated mixture with a larger ¢, and consequently the effects of parasitic convection will be
less in the latter case for the same parasitic flow rate ¢, while the separation coefficient will be larger.
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The effects of yo may be examined via the expanded form of the expression derived from the defini-
tion of H and K, [3]:
4, = HL _poq oD L 31)
K, ghp o

We see that Ve is the product of two quantities, one of which is dependent on the physical constants of the
mixture, while the other is dependent on the geometrical characteristics of the column. Then, increase in
column length I, should lead for the given binary mixture to increase in yg and for fixed  to reduction in

Ing/lng*,

A similar conclusion can be drawn from the effects of reducing the annulus width, as may be seen by
the following argument,

It has been shown [1] that the mean speed of the parasitic flow is

_ 2
5. &Poa’dT 32)
48n
As g = (1/2)paB\Tvp, we have
o T8T
= =, 33
% 7 7.5 o (AT (33)

i,e., » is not explicitly dependent on the gap width, although there is an inexplicit dependence, since re-
duction in a may increase the temperature asymmetry 67T, and v will increase,

The result given by (30) may be related to the K, by incorporating parasitic convection into (2),
We put
HL - Yo
K.+ K P 1+ &

c

= y:, (34)

which enables us to put that

x
— e

1% 1—=2etexp[(l—n)y]
1—u L+ 2¢fexp[—(I+x)y]

whence from (34) we have

K
K,

e .
1ty 1—2ufexpl(1—n)g,] ’ 35)

A TF e[~ (05 9y,

i,e., Kp is strongly dependent on ye, which is not reflected in the results of [2].

2, cc =b, Inthis case, (6) and {7) are replaced from (5) by

2. :

dcz _%,EiC_ZO’ (36)

dyl dyl

dx” dc”
— -+ %= =0. 37)

dy” dx/l

The solutions are

¢ =4 - B exp®'y), (38)
c/, e Arr _}_ Brr eXp (_ %”_l/") (3 9)

which should, as in the previous case, satisfy conditions (10), (11), (14), and (17), from which we find the
values of the arbitrary constants.

Then the concentrations in each of the columns are given by

b »" b . b . b
Y =gy — | 1 ] [l —exp (— n"y")] — —— 1 —exp(—ny = — % (g — ') (40
¢ =c w( i~ )+ E [ P=#4)] —— rall P(=#y)] + —exp [— (5, —y)], 40)

”

b
L (e

g (1= O ()] =g e [ e ()] — - exp ().
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From {(24) we get the concentrations at the bottom and top of the real column
b b b ’ -
Cyy, = Cg + ——— [1 —exp (—%"Y))]| — —— [l —exp(—n'y, ML DL — %y
y=y o 2"y, [ ( ye] 2% [ p(—x ye)] + o [ w0 exp(— 'y} |,

b , b b !
e expm )] — T e — - [ — % exo(—
[1—exp(—="y)] o g [1 —exp(—='y))] [1 &P ( uye)}

Cy=0 =Co + ——
2x" Y, o”

If for simplicity, we put n' =" = «, yé = y"e = ye We get for separation coefficient the expression

b b
T R ) s M) )
l—e¢,_, ¢, b ' b

=y, =0 1—00—‘5; [1—exp(—xy,)] Co—g[l_exi’("”ye)]

ey
i

1

which for ¢; = 0.5 becomes
b 2
[ 14+ -2 (1 —exp(—na)]

b4 |

1— bT [1 —exp (— »4.)]

q:

(41)

(42)

43)

(44)

(45)

The calculated points lie almost exactly on curve 1 in Fig, 2 for the range of values of ye in which we have
CC = const (yg < 3.4); this indicates that the above analysis is correct for any concentration provided that

c«1,

We consider that these results are of vital importance to the design of liguid thermal-diffusion appa-

ratus and indicate ways of raising performance,

NOTATION

H = ggp*(AT)?Ba’e /7201T, K = Ko + Kp, Ko = p2g%0¥(AT)?Ba’/3628807D
are transfer coefficients;

Kp is the parasitic component of the convective transfer coefficients;
B is the perimeter of the separating slot;

a is the gap;

6T is the temperature difference due to temperature asymmetry;

AT is the temperature difference between hot and cold column surfaces;
T is the mean temperature of liquid in column;

jz is the flow of enriching component;

o is the selection;

c is the concentration;

L is the column length;

y = Hz/Kg;

w = a/H;

w is the velocity;
q is the separation coefficient;
M is the viscosity;

p is the density;

1360



D is the diffusion coefficient;

B is the volume expansion coefficient;
a is the thermodiffusion constant.
Subscripts

denotes to positive and of column;
denotes hot;

denotes cold;

denotes parasitic;

denotes reference,

oW O 5o

One prime and two primes refer, respectively, to the column parts shown in Fig, 1 as I and II.
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